КАТЕГОРИИ

Литература, Лингвистика

Компьютеры и периферийные устройства

Философия

Менеджмент (Теория управления и организации)

Бухгалтерский учет

География, Экономическая география

Международные экономические и валютно-кредитные отношения

Технология

Экономическая теория, политэкономия, макроэкономика

Психология, Общение, Человек

Государственное регулирование, Таможня, Налоги

Культурология

Военное дело

Транспорт

Охрана природы, Экология, Природопользование

Музыка

Программное обеспечение

История

Уголовный процесс

Математика

Маркетинг, товароведение, реклама

Геология

Финансовое право

Политология, Политистория

Биология

Сельское хозяйство

Медицина

Химия

Криминалистика и криминология

Техника

Трудовое право

Социология

Теория систем управления

Физика

Искусство, Культура, Литература

Космонавтика

Физкультура и Спорт

Историческая личность

История отечественного государства и права

Искусство

Астрономия

Гражданское право

Здоровье

Радиоэлектроника

Военная кафедра

Право

Уголовное право

Уголовное и уголовно-исполнительное право

История экономических учений

Педагогика

Программирование, Базы данных

Микроэкономика, экономика предприятия, предпринимательство

Правоохранительные органы

Религия

Налоговое право

Разное

Прокурорский надзор

Нотариат

Международное частное право

Компьютеры, Программирование

Биржевое дело

Банковское дело и кредитование

Архитектура

Ветеринария

Компьютерные сети

Юридическая психология

Адамантан, Призман, Кубан

Адамантан, Призман, Кубан

Адамантан был открыт в 1933г. чехословацкими исследователями С. Ландой и В. Махачеком при исследовании состава нефти Годонинского месторождения. Из тонны этой нефти было выделено несколько граммов тугоплавкого, но летучего вещества, представляющего собой белый порошок. Были установлены состав и строение открытого углеводорода.

Ученые дали ему название 'Адамантан', которое сразу же привилось.

Казалось совершенно несомненным, что адамантан, как и все насыщенные циклические углеводороды, будет устойчив к действию большинства реагентов, например окислителей. Но малая доступность нового вещества не позволила провести масштабные исследования его свойств. В 1957 г. американский химик П. Шляйер обнаружил, что при обработке гидрированного дициклопентадиена хлоридом или бромидом алюминия с выходом 12% образуется адамантан: А исходное соединение получается крайне просто, в две стадии, из широко распространенного химического реактива - циклопентадиена: Через 3 года фирма 'Дюпон' взяла патент на сходный процесс, в результате которого адамантан образуется уже с выходом 42%. После того, как адамантан стал доступен, начались исследования его химических свойств.

Адамантан, как оказалось, действительно с трудом окисляется, но при реакции с хлором реагирует, давая смеси продуктов сложного состава. Химик из ФРГ Г. Штеттер обратил внимание на незамеченную ранее работу С. Ланды, в которой утверждалось, что адамантан легко реагирует с жидким бромом, давая с почти количественным выходом 1-бромадамантан: Экспериментальная проверка полностью подтвердила справедливость этого невероятного сообщения: ведь подобные структуры вообще не бромируются! Дальнейшие исследования привели к еще более интересным результатам.

Оказалось, что бромирование адамантана идет не по обычному для всех углеводородов радикальному механизму, а по ионному механизму, т.е. с промежуточным образованием ионов.

Казалось совершенно невероятным, что жесткий трехмерный каркас молекулы адамантана способен деформироваться, чтобы образовать плоское переходное состояние.

Объяснение оказалось неожиданно простым. Чтобы в ходе реакции молекула стала более плоской, химические связи должны деформироваться. В обычных молекулах деформируются в основном связи, непосредственно примыкающие к реакционному центру, в результате чего возникают сильные местные напряжения. А в высокосимметричной молекуле адамантана напряжения не концентрируются, а равномерно распределяются по всему скелету. В результате этот углеводород с неожиданной легкостью вступает в ионные реакции. В реакциях с участием адамантана обычно замещается атом водорода при третичном атоме углерода, т.к. он имеет большую подвижность. Атом брома в 1-бромадамантане легко обменивается на аминогруппу, на гидроксильную группу и др.

Сейчас синтезировано более тысячи разнообразных производных адамантана, многие из которых представляют не только теоретический, но и практический интерес.

Например, радикал адамантил пытаются ввести в молекулы различных лекарственных веществ, в результате чего лекарственные вещества приобретают новые свойства. К лекарствам - производным адамантана относятся: 1) Ремантадин (1-адамантил-1-этиламина гидрохлорид): Представляет собой белый кристаллический порошок, горький на вкус.

Является специфическим химиотерапевтическим препаратом, оказывающим профилактическое действие в отношении гриппозной инфекции, вызванной штаммами вируса типа А2. 2) Адапромин ( a -Пропил-1-адамантил-этиламина гидрохлорид). По химической структуре и действию близок к Ремантадину, но эффективен в отношении вирусов гриппа А и В. 3) Мидантан (1-Аминоадамантана гидрохлорид): Препарат был первоначально предложен в качестве противовирусного средства, эффективного в отношении вирусов гриппа типа А2. В дальнейшем была обнаружена его активность при паркинсонизме, для лечения чего он сейчас и применяется. 4) Глудантан (Глюкуронид 1-аминоадамантана): Сходен по действию с Мидантаном, эффективен при паркинсонизме разл. этиологии, в частности при нейролептическом и посттравматическом синдроме.

Введение в молекулу препарата глюкуронидного радикала несколько уменьшает его токсичность по сравнению с Мидантаном и улучшает его прохождение через гематоэнцефалический барьер. Кубан. Кубан - это насыщенный алициклический углеводород с формулой C 8 H 8 , в которой 8 атомов углерода с присоединенным к каждому водородом образуют куб: Получен он путем целенаправленного синтеза американскими химиками Филом Итоном и Томасом Коулом в 1964 г. по следующей методике: В веществе 1 есть две кетогруппы CO. Одну из них авторы предлагают защитить реакцией с этиленгликолем.

Авторы предполагали, что кубан нестабилен.

Поэтому они предпочли многостадийный процесс, пользуясь защитной стратегией. На самом деле обе кетогруппы могут быть превращены в карбоксильные за один этап. При этом существенно повышается выход кубана. Как ни странно, цикл кубана более устойчив, чем с разорванной связью.

Поэтому кубан неохотно вступает в реакции, ведущие к раскрытию цикла. Целью получения кубана были фундаментальные исследования и кубан вначале представлял лишь теоретический интерес.

Сейчас, 30 лет спустя, промышленность проявляет интерес к некоторым производным кубана, которые могут найти применение в качестве лекарств, взрывчатых веществ и топлив. Они производятся сейчас на опытных установках в килограммовых количествах.

Призман.